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Linear differential equations

The linear continuous time model is a set of n first-order linear differential
equations

dx

dt
= Ax + Bu

y = Cx + Du (1)

in which

x state n-vector
u manipulated input m-vector
y measured output p-vector
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Discrete time linear difference equations

For discrete time systems, we have a sample time, denoted ∆, and we
are interested in the state, input and output of the system only at the
sample times, t = k∆.

The linear difference equation that represents the behavior at the
sample times is given by

x(k + 1) = Adx(k) + Bdu(k)

y(k) = Cdx(k) + Ddu(k) (2)

The following formulas let us convert from the continuous time
differential equation model to the discrete time model difference
equation model

Ad = eA∆ Bd = A−1(eA∆ − In)B Cd = C Dd = D (3)
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Formulas are exact!

Note that if u(t) is a constant between samples (known as a
zero-order hold), then these formulas are exact and there is no
approximation error such as we would have if we used an Euler
method to approximate the time derivative in (1).

Note also that if A is singular (one or more of its eigenvalues are
zero), A−1 does not exist and the formula for Bd is not defined.

You can obtain Bd from the following relationship that does not
require A−1

exp

(
∆

[
A B
0 0

])
=

[
Ad Bd

0 I

]
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A point on dot and + notation

Just like in the continuous time model where we use the dot notation to
represent the time derivative

dx

dt
= Ax + Bu ẋ = Ax + Bu

y = Cx + Du y = Cx + Du

In discrete time we use the + notation to represent the state at the next
sample time

x(k + 1) = Ax(k) + Bu(k) x+ = Ax + Bu

y(k) = Cx(k) + Du(k) y = Cx + Du
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Linear quadratic regulation

We start by designing a controller to take the state of a deterministic,
linear system to the origin.

If the setpoint is not the origin, or we wish to track a time-varying
setpoint trajectory, we will subsequently make modifications of the
zero setpoint problem to account for that.

The system model is

x+ = Ax + Bu

y = Cx (4)

in which x is an n vector, u is an m vector, and y is a p vector.
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State feedback

In this first problem, we assume that the state is measured, or C = I .

We will handle the output measurement problem with state
estimation in the next section.

Using the model we can predict how the state evolves given any set of
inputs we are considering.
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Sequence of inputs (decision variables)

Consider N time steps into the future and collect the input sequence
into u,

u = {u(0), u(1), . . . , u(N − 1)}

Constraints on the u sequence (i.e., valve saturations, etc.) are the
main feature that distinguishes MPC from the standard linear
quadratic (LQ) control.
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Constraints

The manipulated inputs (valve positions, voltages, torques, etc.) to
most physical systems are bounded. We include these constraints by
linear inequalities

Eu(k) ≤ e k = 0, 1, . . .

in which

E =

[
I
−I

]
e =

[
u
−u

]
are chosen to describe simple bounds such as

u ≤ u(k) ≤ u k = 0, 1, . . .

We sometimes wish to impose constraints on states or outputs for
reasons of safety, operability, product quality, etc. These can be
stated as

Fx(k) ≤ f k = 0, 1, . . .
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Rate of change constraints

Practitioners find it convenient in some applications to limit the rate
of change of the input, u(k)− u(k − 1). To maintain the state space
form of the model, we may augment the state as

x̃(k) =

[
x(k)

u(k − 1)

]
and the augmented system model becomes

x̃+ = Ãx̃ + B̃u

y = C̃ x̃

in which

Ã =

[
A 0
0 0

]
B̃ =

[
B
I

]
C̃ =

[
C 0

]
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Rate of change constraints

A rate of change constraint such as

∆ ≤ u(k)− u(k − 1) ≤ ∆ k = 0, 1, . . .

is then stated as

F x̃(k) + Eu(k) ≤ e F =

[
0 −I
0 I

]
E =

[
I
−I

]
e =

[
∆
−∆

]
To simplify analysis, it pays to maintain linear constraints when using
linear dynamic models. So if we want to consider fairly general
constraints for a linear system, we choose the form

Fx(k) + Eu(k) ≤ e k = 0, 1, . . .

which subsumes all the forms listed previously.
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Controller objective function

We first define an objective function V (·) to measure the deviation of
the trajectory of x(k), u(k) from zero by summing the weighted
squares

V (x(0),u) =
1

2

N−1∑
k=0

[
x(k)′Qx(k) + u(k)′Ru(k)

]
+

1

2
x(N)′Pf x(N)

subject to
x+ = Ax + Bu

The objective function depends on the input sequence and state
sequence.

The initial state is available from the measurement. The remainder of
the state trajectory, x(k), k = 1, . . . ,N, is determined by the model
and the input sequence u.

So we show the objective function’s explicit dependence on the input
sequence and initial state.
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Regulator tuning parameters

The tuning parameters in the controller are the matrices Q and R.
Note that we are using the deviation of u from zero as the input
penalty. We’ll use rate of change penalty S later.

We allow the final state penalty to have a different weighting matrix,
Pf , for generality.

Large values of Q in comparison to R reflect the designer’s intent to
drive the state to the origin quickly at the expense of large control
action.

Penalizing the control action through large values of R relative to Q
is the way to reduce the control action and slow down the rate at
which the state approaches the origin.

Choosing appropriate values of Q and R (i.e., tuning) is not always
obvious, and this difficulty is one of the challenges faced by industrial
practitioners of LQ control. Notice that MPC inherits this tuning
challenge.
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Regulation problem—definition

We then formulate the following optimal MPC control problem

min
u

V (x(0),u) (5)

subject to

x+ = Ax + Bu Fx(k) + Eu(k) ≤ e, k = 0, 1, . . . ,N − 1

The Q, Pf and R matrices often are chosen to be diagonal, but we do
not assume that here. We assume, however, that Q, Pf , and R are
real and symmetric; Q and Pf are positive semidefinite; and R is
positive definite.

These assumptions guarantee that the solution to the optimal control
problem exists and is unique.
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Let’s first examine a scalar system (n = 1) with horizon
N = 1

We have only one move to optimize, u0.

x1 = ax0 + bu0

The objective is

V = (1/2)
(
qx2

0 + ru2
0 + pf x

2
1

)
Expand the x1 term to see its dependence on the control u0

V = (1/2)
(
qx2

0 + ru2
0 + pf (ax0 + bu0)2

)
= (1/2)

(
qx2

0 + ru2
0 + pf (a2x2

0 + 2abx0u0 + b2u2
0)

)
V = (1/2)

(
(q + a2pf )x2

0 + 2(bapf x0)u0 + (b2pf + r)u2
0

)
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Take derivative dV /du0, set to zero

Take the derivative, set to zero

d

du0
V = bpf ax0 + (b2pf + r)u0

0 = bpf ax0 + (b2pf + r)u0

Solve for optimal control

u0
0 = − bpf a

b2pf + r
x0

u0
0 = kx0 k = − bpf a

b2pf + r
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Back to vectors and matrices

Quadratic functions in x0 and u0

V = (1/2)

(
x ′0(Q + A′Pf A)x0 + 2u′0B

′Pf Ax0 + u′0(B ′Pf B + R)u0

)
Take derivative, set to zero, solve

d

du0
V = B ′Pf Ax0 + (B ′Pf B + R)u0

u0
0 = −(B ′Pf B + R)−1B ′Pf Ax0

So we have the optimal linear control law

u0
0 = Kx0 K = −(B ′Pf B + R)−1B ′Pf A
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Dynamic programming solution

To handle N > 1, we can go to the end of the horizon and work our
way backwards to the beginning of the horizon.

This trick is known as (backwards) dynamic programming. Developed
by Bellman (1957).

Each problem that we solve going backwards is an N = 1 problem,
which we already know how to solve!

When we arrive at k = 0, we have the optimal control as a function
of the initial state. This is our control law.

We next examine the outcome of applying dynamic programming to
the LQ problem.
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The regulator Riccati equation

The recursion from Π(k) to Π(k − 1) is known as a backward Riccati
iteration. To summarize, the backward Riccati iteration is defined as
follows

Π(k − 1) = Q + A′Π(k)A− A′Π(k)B
(
B ′Π(k)B + R

)−1
B ′Π(k)A

k = N,N − 1, . . . , 1 (6)

with terminal condition
Π(N) = Pf (7)

The terminal condition replaces the typical initial condition because
the iteration is running backward.
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The optimal control policy

The optimal control policy at each stage is

u0
k(x) = K (k)x k = N − 1,N − 2, . . . , 0 (8)

The optimal gain at time k is computed from the Riccati matrix at
time k + 1

K (k) = −
(
B ′Π(k + 1)B + R

)−1
B ′Π(k + 1)A

k = N − 1,N − 2, . . . , 0 (9)

The optimal cost to go from time k to time N is

V 0
k (x) = (1/2)x ′Π(k)x k = N,N − 1, . . . , 0 (10)
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Whew. OK, the controller is optimal, but is it useful?

We now have set up and solved the (unconstrained) optimal control
problem.

Next we are going to study some of the closed-loop properties of the
controlled system under this controller. One of these properties is
closed-loop stability.

Before diving into the controller stability discussion, let’s take a
breather and see what kinds of things that we should guard against
when using the optimal controller.

We start with a simple scalar system with inverse response or,
equivalently, a right-half-plane zero in the system transfer function.

y(s) = g(s)u(s) g(s) = k
s − a

s + b
, a, b > 0
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Step response of system with right-half-plane zero

Convert the transfer function to state space (notice a nonzero D)

d

dt
x = Ax + Bu A = −b B = −(a + b)

y = Cx + Du C = k D = k

Solve the ODEs with u(t) = 1 and x(0) = 0

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-5 0 5 10 15 20

y

time

Figure 1: Step response of a system with a right-half-plane zero.
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What input delivers a unit step change in the output?

Say I make a unit step change in the setpoint of y . What u(t) (if
any) can deliver a (perfect) unit step in y(t)?

In the Laplace domain, y(s) = 1/s. Solve for u(s). Since y = g(s)u
we have that

u(s) =
y(s)

g(s)
=

s + b

ks(s − a)

We can invert this signal back to the time domaina to obtain

u(t) =
1

ka

[
− b + (a + b)eat

]
Note that the second term is a growing exponential for a > 0.
Hmmm. . . How well will that work?

aUse partial fractions, for example.
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Simulating the system with chosen input
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Figure 2: Output response with an exponential input for a system with RHP zero.

Sure enough, that input moves the output right to its setpoint!
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Will this work in practice?

So we can indeed achieve perfect tracking in y(t) with this growing
input u(t).

Because the system g(s) = k(s − a)/(s + b) has a zero at s = a, and
u(s) has a 1/(s − a) term, they cancel and we see nice behavior
rather than exponential growth in y(t).

This cancellation is the so-called input blocking property of the
transfer function zero.

But what happens if u(t) hits a constraint, u(t) ≤ umax.

Let’s simulate the system again, but with an input constraint at
umax = 20. We achieve the following result.
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Output behavior when the exponential input saturates

The input saturation destroys the nice output behavior
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Figure 3: Output response with input saturation for a system with RHP zero.
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So how can we reliably use optimal control?

Control theory to the rescue

The optimal controller needs to know to avoid exploiting this
exponential input. But how do we tell it?

We cannot let it start down the exponential path and find out only
later that this was a bad idea.

We have to eliminate this option by the structure of the optimal
control problem.

More importantly, even if we fix this issue, how do we know that we
have eliminated every other path to instability for every other kind of
(large, multivariable) system?

Addressing this kind of issue is where control theory is a lot more
useful than brute force simulation.

Freiburg 2015 NMPC Introduction: LQR and LQE 28 / 99



The infinite horizon LQ problem

Let us motivate the infinite horizon problem by showing a weakness of
the finite horizon problem. Kalman (1960b, p.113) pointed out in his
classic 1960 paper that optimality does not ensure stability.

In the engineering literature it is often assumed (tacitly and
incorrectly) that a system with an optimal control law is
necessarily stable.

Assume that we use as our control law the first feedback gain of the
N stage finite horizon problem, KN(0),

u(k) = KN(0)x(k)

Then the stability of the closed-loop system is determined by the
eigenvalues of A + BKN(0). We now construct an example that shows
choosing Q > 0, R > 0, and N ≥ 1 does not ensure stability. In fact,
we can find reasonable values of these parameters such that the
controller destabilizes a stable system.
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An optimal controller that is closed-loop unstable

Let

A =

[
4/3 −2/3

1 0

]
B =

[
1
0

]
C = [−2/3 1]

This discrete-time system has a transfer function zero at z = 3/2,
i.e., an unstable zero (or a right-half-plane zero in continuous time).

We now construct an LQ controller that inverts this zero and hence
produces an unstable system.

We would like to choose Q = C ′C so that y itself is penalized, but
that Q is only semidefinite.

We add a small positive definite piece to C ′C so that Q is positive
definite, and choose a small positive R penalty (to encourage the
controller to misbehave), and N = 5,

Q = C ′C + 0.001I =

[
4/9 + .001 −2/3

−2/3 1.001

]
R = 0.001
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Compute the control law

We now iterate the Riccati equation four times starting from
Π = Pf = Q and compute KN(0) for N = 5.

Then we compute the eigenvalues of A + BKN(0) and achieve1

eig(A + BK5(0)) = {1.307, 0.001}

Using this controller the closed-loop system evolution is
x(k) = (A + BK5(0))kx0.

Since an eigenvalue of A + BK5(0) is greater than unity, x(k)→∞
as k →∞.

In other words the closed-loop system is unstable.

1Please check this answer with Octave or Matlab.
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Closed-loop eigenvalues for different N ; Riccati iteration
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Figure 4: Closed-loop eigenvalues of A + BKN(0) for different horizon length N (o);
open-loop eigenvalues of A (x); real versus imaginary parts.
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Stability and horizon length—another view
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Figure 5: Stability dependence on horizon. The horizontal line at 1 is the stability
boundary, while the horizontal line at 0.664 is the maximum eigenvalue of the
infinite-horizon regulator.

Freiburg 2015 NMPC Introduction: LQR and LQE 33 / 99



Why is the closed-loop unstable?

A finite horizon objective function may not give a stable controller!

How is this possible?
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What happens if we make the horizon N larger?

If we continue to iterate the Riccati equation, which corresponds to
increasing the horizon in the controller, we obtain for N = 7

eig(A + BK7(0)) = {0.989, 0.001}

and the controller is stabilizing.

If we continue iterating the Riccati equation, we converge to the
following steady-state closed-loop eigenvalues

eig(A + BK∞(0)) = {0.664, 0.001}

This controller corresponds to an infinite horizon control law.

Notice that it is stabilizing and has a reasonable stability margin.

Nominal stability is a guaranteed property of infinite horizon
controllers as we prove in the next section.
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The forecast versus the closed-loop behavior for N = 5

0.01

0.1

1

10

0 2 4 6 8 10 12 14

y(k)

k

Figure 6: The forecast versus the closed-loop behavior for N = 5.
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The forecast versus the closed-loop behavior for N = 7
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Figure 7: The forecast versus the closed-loop behavior for N = 7.
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The forecast versus the closed-loop behavior for N = 20
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Figure 8: The forecast versus the closed-loop behavior for N = 20.
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The infinite horizon regulator

With this motivation, we are led to consider directly the infinite
horizon case

V (x(0),u) =
1

2

∞∑
k=0

x(k)′Qx(k) + u(k)′Ru(k) (11)

in which x(k) is the solution at time k of x+ = Ax + Bu if the initial
state is x(0) and the input sequence is u.

If we are interested in a continuous process (i.e., no final time), then
the natural cost function is an infinite horizon cost.

If we were truly interested in a batch process (i.e., the process does
stop at k = N), then stability is not a relevant property, and we
naturally would use the finite horizon LQ controller and the
time-varying controller, u(k) = K (k)x(k), k = 0, 1, . . . ,N.
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When can we compute an infinite horizon cost?

In considering the infinite horizon problem, we first restrict attention
to systems for which there exist input sequences that give bounded
cost.

Consider the case A = I and B = 0, for example. Regardless of the
choice of input sequence, (11) is unbounded for x(0) 6= 0.

It seems clear that we are not going to stabilize an unstable system
(A = I ) without any input (B = 0).

This is an example of an uncontrollable system.

In order to state the sharpest results on stabilization, we require the
concepts of controllability, stabilizability, observability, and
detectability. We shall define these concepts subsequently.
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Controllability

A system is controllable if, for any pair of states x , z in the state
space, z can be reached in finite time from x (or x controlled to z)
(Sontag, 1998, p.83).

A linear discrete time system x+ = Ax + Bu is therefore controllable
if there exists a finite time N and a sequence of inputs

{u(0), u(1), . . . u(N − 1)}

that can transfer the system from any x to any z in which

z = ANx +
[
B AB · · · AN−1B

]

u(N − 1)
u(n − 2)

...
u(0)
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Checking with N = n moves is sufficient

For an unconstrained linear system, if we cannot reach z in n moves,
we cannot reach z in any number of moves.

The question of controllability of a linear time-invariant system is
therefore a question of existence of solutions to linear equations for
an arbitrary right-hand side

[
B AB · · · An−1B

]

u(n − 1)
u(n − 2)

...
u(0)

 = z − Anx

The matrix appearing in this equation is known as the controllability
matrix C

C =
[
B AB · · · An−1B

]
(12)
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Controllability test

From the fundamental theorem of linear algebra, we know a solution
exists for all right-hand sides if and only if the rows of the n × nm
controllability matrix are linearly independent.2

Therefore, the system (A,B) is controllable if and only if

rank(C) = n

2See Section A.4 in Appendix A of (Rawlings and Mayne, 2009) or (Strang, 1980,
pp.87–88) for a review of this result.
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Convergence of the linear quadratic regulator

We now show that the infinite horizon regulator asymptotically
stabilizes the origin for the closed-loop system. Define the infinite
horizon objective function

V (x ,u) =
1

2

∞∑
k=0

x(k)′Qx(k) + u(k)′Ru(k)

subject to

x+ = Ax + Bu

x(0) = x

with Q,R > 0.
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Convergence of the linear quadratic regulator

If (A,B) is controllable, the solution to the optimization problem

min
u

V (x ,u)

exists and is unique for all x .

We denote the optimal solution by u0(x), and the first input in the
optimal sequence by u0(x).

The feedback control law κ∞(·) for this infinite horizon case is then
defined as u = κ∞(x) in which κ∞(x) = u0(x) = u0(0; x).
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LQR stability

As stated in the following lemma, this infinite horizon linear quadratic
regulator (LQR) is stabilizing.

Lemma 1 (LQR convergence)

For (A,B) controllable, the infinite horizon LQR with Q,R > 0 gives a
convergent closed-loop system

x+ = Ax + Bκ∞(x)
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Controllability gives finite cost

The cost of the infinite horizon objective is bounded above for all
x(0) because (A,B) is controllable.

Controllability implies that there exists a sequence of n inputs
{u(0), u(1), . . . , u(n − 1)} that transfers the state from any x(0) to
x(n) = 0.

A zero control sequence after k = n for {u(n + 1), u(n + 2), . . .}
generates zero cost for all terms in V after k = n, and the objective
function for this infinite control sequence is therefore finite.

The cost function is strictly convex in u because R > 0 so the
solution to the optimization is unique.
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Proof of closed-loop convergence

If we consider the sequence of costs to go along the closed-loop
trajectory, we have for Vk = V 0(x(k))

Vk+1 = Vk − (1/2)
(
x(k)′Qx(k) + u(k)′Ru(k)

)
in which Vk = V 0(x(k)) is the cost at time k for state value x(k)
and u(k) = u0(x(k)) is the optimal control for state x(k).

The cost along the closed-loop trajectory is nonincreasing and
bounded below (by zero). Therefore, the sequence {Vk} converges
and

x(k)′Qx(k)→ 0 u(k)′Ru(k)→ 0 as k →∞

Since Q,R > 0, we have

x(k)→ 0 u(k)→ 0 as k →∞

and closed-loop convergence is established.

Freiburg 2015 NMPC Introduction: LQR and LQE 48 / 99



Connection to Riccati equation

In fact we know more. From the previous sections, we know the
optimal solution is found by iterating the Riccati equation, and the
optimal infinite horizon control law and optimal cost are given by

u0(x) = Kx V 0(x) = (1/2)x ′Πx

in which

K = −(B ′ΠB + R)−1B ′ΠA

Π = Q + A′ΠA− A′ΠB(B ′ΠB + R)−1B ′ΠA (13)

Proving Lemma 1 has shown also that for (A,B) controllable and
Q,R > 0, a positive definite solution to the discrete algebraic Riccati
equation (DARE), (13), exists and the eigenvalues of (A + BK ) are
asymptotically stable for the K corresponding to this
solution (Bertsekas, 1987, pp.58–64).
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Extensions to constrained systems

This basic approach to establishing regulator stability will be
generalized to handle constrained (and nonlinear) systems

The optimal cost is a Lyapunov function for the closed-loop system.

We also can strengthen the stability for linear systems from
asymptotic stability to exponential stability based on the form of the
Lyapunov function.

Freiburg 2015 NMPC Introduction: LQR and LQE 50 / 99



Enlarging the class of systems

The LQR convergence result in Lemma 1 is the simplest to establish,
but we can enlarge the class of systems and penalties for which
closed-loop stability is guaranteed.

The system restriction can be weakened from controllability to
stabilizability, which is discussed in Exercises 1.19 and 1.20.

The restriction on the allowable state penalty Q can be weakened
from Q > 0 to Q ≥ 0 and (A,Q) detectable, which is also discussed
in Exercise 1.20.

The restriction R > 0 is retained to ensure uniqueness of the control
law.

In applications, if one cares little about the cost of the control, then
R is chosen to be small, but positive definite.
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Constrained regulation

Now we add the constraints to the control problem.

Control Objective.

V (x(0),u) =
1

2

N−1∑
k=0

[
x(k)′Qx(k) + u(k)′Ru(k)

]
+

1

2
x(N)′Pf x(N)

Constraints.

Fx(k) + Eu(k) ≤ e, k = 0, 1, . . .N − 1

Optimization.
min
u

V (x ,u)

subject to the model and constraints.
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Adding constraints is a big change!

We cannot solve the constrained problem in closed-form using
dynamic programming.

Now we have a quadratic objective subject to linear constraints,
which is known as a quadratic program (Nocedal and Wright, 1999).

We must compute the solution for industrial-sized multivariable
problems online.

We must compute all the u(k), k = 1, 2, . . . ,N − 1 simultaneously.
That means a bigger online computation.

But we have fast, reliable online computing available; why not use it?
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The geometry of quadratic programming

min
u

V (u) = (1/2)u′Hu + h′u subject to Du ≤ d

u1

u2

u0 = −H−1h

V (u) = constant

Du ≤ d

quadratic program

least squares
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The simplest possible constrained control law

The optimal control law for the regulation problem with an active
input constraint remains linear (affine) u = Kx + b.
But the control laws are valid over only local polyhedral regions
The simplest example would be a SISO, first-order system with input
saturation. There are three regions.

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

u

x

κN(x)

Figure 9: The optimal control law for x+ = x + u, N = 2, Q = R = 1, u ∈ [−1, 1].
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Stability of the closed-loop system

We denote the solution to the QP, which depends on the initial state
x as

u0(x) = κN(x)

The constrained controller is now nonlinear even though the model is
linear

The closed-loop system is then

x+ = Ax + BκN(x)

And we would like to design the controller (choose N, Q, R, Pf ) so
that the closed-loop system is stable.
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Terminal constraint solution

Adding a terminal constraint x(N) = 0 ensures stability

May cause infeasibility (cannot reach 0 in only N moves)
Open-loop predictions not equal to closed-loop behavior
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Infinite horizon solution

The infinite horizon ensures stability

Open-loop predictions equal to closed-loop behavior (desirable!)
Challenge to implement
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Implementation challenges

The theory is now in reasonably good shape. In 1990, there was no
theory addressing the control problem with constraints.

Numerical QP solution methods are efficient and robust.

In the process industries, applications with hundreds of states and
inputs are running today.

But challenges remain:
I Scale. Methods must scale well with horizon N, number of states n,

and inputs, m. The size of applications continues to grow.
I Ill-conditioning. Detect and repair nearly collinear constraints, badly

conditioned Hessian matrix.
I Model accuracy. How to adjust the models automatically as conditions

in the plant change.
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State estimation

In most applications, the variables that are conveniently or
economically measurable (y) are a small subset of the state variables
required to model the system (x).

Moreover, the measurement is corrupted with sensor noise and the
state evolution is corrupted with process noise.

Determining a good state estimate for use in the regulator in the face
of a noisy and incomplete output measurement is a challenging task.

This is the challenge of state estimation.
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Noise in the data

To fully appreciate the fundamentals of state estimation, we must
address the fluctuations in the data.
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Figure 10: A measurement with noise
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Deterministic and stochastic systems

The motivation for stochastic models is to account for the random
effects of the environment (disturbances) on the system under study.

Some of the observed fluctuation in the data is assignable to the
measurement device. This source of fluctuation is known as
measurement “noise.”

Some of the observed fluctuation in the data is assignable to
unmodeled disturbances from the environment affecting the state of
the system.

The simplest stochastic model for representing these two possible
sources of disturbances is a linear model with added random variables

x+ = Ax + Bu + w

y = Cx + Du + v

with initial condition x(0) = x0.
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Kalman filter

The random variable v (p vector) is used to model the measurement
noise and w (n vector) models the random part of the process
disturbance.

Given a linear discrete time model subject to normally distributed
process and measurement noise, the optimal state estimator is known
as the Kalman filter (Kalman, 1960a).

Rather than take this up this stochastic version of the problem, we
will first derive an optimal deterministic least-squares estimator.

It can be shown that this deterministic least-squares estimator and
the optimal stochastic (Kalman) filter are equivalent.
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Least-squares estimation

We first consider the state estimation problem as a deterministic
optimization problem rather than an exercise in maximizing
conditional density.

Consider a time horizon with measurements y(k), k = 0, 1, . . . ,T . We
consider the prior information to be our best initial guess of the initial
state x(0), denoted x(0), and weighting matrices P−(0), Q, and R for
the initial state, process disturbance, and measurement disturbance.

A reasonably flexible choice for objective function is

VT (x(T )) =
1

2

(
|x(0)− x(0)|2(P−(0))−1 +

T−1∑
k=0

|x(k + 1)− Ax(k)|2Q−1 +
T∑

k=0

|y(k)− Cx(k)|2R−1

)
(14)

in which x(T ) := {x(0), x(1), . . . , x(T )}.
Freiburg 2015 NMPC Introduction: LQR and LQE 64 / 99



Least-squares estimation

We claim that the following (deterministic) least squares optimization
problem produces the same result as the conditional density function
maximization of the Kalman filter

min
x(T )

VT (x(T )) (15)

See, for example, (Rawlings and Mayne, 2009, pp. 28–32) for a proof
of this claim.
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Let’s first examine a scalar system with T = 1

We have only one state to optimize, x0.

The objective is

V (x0) = (1/2)

(
(x0 − x0)2

p−0
+

(y0 − cx0)2

r

)
Take derivative dV /dx0, set to zero

d

dx0
V =

(x0 − x0)

p−0
+
−c(y0 − cx0)

r

0 =
(x0 − x0)

p−0
+
−c(y0 − cx0)

r

0 = r(x0 − x0)− p−0 c(y0 − cx0)

0 = (c2p−0 + r)x0 +−rx0 − p−0 cy0

Freiburg 2015 NMPC Introduction: LQR and LQE 66 / 99



Scalar system with T = 1

Rearrange and solve for optimal estimate, denoted x̂0

x̂0 =
r

c2p−0 + r
x0 +

p−0 c

c2p−0 + r
y0

x̂0 =
c2p−0 + r

c2p−0 + r
x0 +

p−0 c

c2p−0 + r
(y0 − cx0)

x̂0 = x0 +
p−0 c

c2p−0 + r
(y0 − cx0)

As in regulation, we see a linear update formula, with estimator gain
`0 operating on our prior fitting error y0 − cx0.

x̂0 = x0︸︷︷︸
prior

+ `0︸︷︷︸
gain

(y0 − cx0)︸ ︷︷ ︸
fitting error

`0 =
p−0 c

c2p−0 + r
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Back to vectors and matrices (T = 1)

Quadratic functions in x0

V (x0) = (1/2)

(
(x0−x0)′(P−0 )−1(x0−x0)+(y0−Cx0)′R−1(y0−Cx0)

)
Take derivative, set to zero, solve3

x̂0 = x0 + L0(y0 − Cx0) L0 = P−0 C ′(CP−0 C ′ + R)−1

Note the similarity to the scalar case

The cost function can then be written as

V (x0) = (1/2)(x0 − x̂0)′P−1
0 (x0 − x̂0) + constant

P0 = P−0 − P−0 C ′(CP−0 C ′ + R)−1CP−0

3Note that you require the matrix inversion lemma for this step in the vector/matrix
case. See (Rawlings and Mayne, 2009, p.34) for details.
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Adding subsequent measurements; T > 1

Just as in regulation, we can use (forward) dynamic programming to
optimize over each xk as new measurements arrive.

The result is a two-step procedure.

Adding the measurement at time k produces

x̂(k) = x̂−(k) + L(k)(y(k)− Cx̂−(k))

L(k) = P−(k)C ′(CP−(k)C ′ + R)−1

P(k) = P−(k)− P−(k)C ′(CP−(k)C ′ + R)−1CP−(k)

Propagating the model to time k + 1

x̂−(k + 1) = Ax̂(k)

P−(k + 1) = AP(k)A′ + Q

Notice that the recursion provides a highly efficient online procedure
for estimating the state.
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The stochastic interpretation of x̂ and P

x̂ and P are estimates of parameters in the conditional probability of x(k)
given y(0), . . . , y(k).

x̂

p (x(k) | y(0), . . . , y(k))

P

x̂ + P
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Optimal stochastic filter and recursive least squares

The discovery (and rediscovery) of the close connection between
recursive least squares and optimal statistical estimation has not
always been greeted happily by researchers:

The recursive least squares approach was actually inspired by
probabilistic results that automatically produce an equation
of evolution for the estimate (the conditional mean). In
fact, much of the recent least squares work did nothing
more than rederive the probabilistic results (perhaps in an
attempt to understand them). As a result, much of the least
squares work contributes very little to estimation theory.
— Jazwinski (1970, pp.152–153)

Freiburg 2015 NMPC Introduction: LQR and LQE 71 / 99



Optimal stochastic filter and recursive least squares

In contrast with this view, we find both approaches valuable.

The probabilistic approach, which views the state estimator as
maximizing conditional density of the state given measurement, offers
the most insight. It provides a rigorous basis for comparing different
estimators based on the variance of their estimate error.

It also specifies what information is required to define an optimal
estimator, with variances Q and R of primary importance.

In the probabilistic framework, these parameters should be found from
modeling and data.

The main deficiency in the least squares viewpoint is that the
objective function, although reasonable, is ad hoc and not justified.

The choice of weighting matrices Q and R is arbitrary.

If we restrict attention to unconstrained linear systems, the
probabilistic viewpoint is clearly superior.
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Optimal stochastic filter and recursive least squares

Approaching state estimation with the perspective of least squares
pays off, however, when the models are significantly more complex. It
is generally intractable to find and maximize the conditional density
of the state given measurements for complex, nonlinear and
constrained models.

Reasonable and useful objective functions can be chosen for even
complex, nonlinear and constrained models.

Moreover, knowing which least squares problems correspond to which
statistically optimal estimation problems for the simple linear case,
provides the engineer with valuable insight in choosing useful
objective functions for nonlinear estimation.
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Let’s try out the Kalman filter

Example 2

Let’s estimate a “constant” from noisy measurements. Say we want to
know the temperature in this room. We don’t expect it to be changing on
a short time scale, and we have a quite noisy temperature measurement.
Since x(k) is supposed to be constant, and we measure it, the model is
very simple

x+ = x + w

y = x + v

in which A = I ,C = I , and we assume w and v are zero mean random
variables with variances Q and R. We expect that R � Q.
We make an initial guess x0 = 70◦F and assign some uncertainty to that
guess, P0 = 1. Let the true temperature be x = 75◦F. Examine the
performance of the Kalman filter in estimating the temperature as
measurements become available.
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Implementing the KF is easy

Solution
nsim = 500; time = [0:nsim-1];

x0 = 75; xhat0 = 70;

P0 = 1;

Q = 0; R = 1;

x(1) = x0; xhat_(1) = xhat0;

P_(1) = P0;

for k = 1:nsim

v = sqrt(R)*randn;

y(k) = x(k) + v;

L(k) = P_(k)/(P_(k)+R);

xhat(k) = xhat_(k) + L(k)*(y(k)-xhat_(k));

P(k) = P_(k) - P_(k)/(P_(k)+R)*P_(k);

if (k == nsim) break endif

w = sqrt(Q)*randn;

x(k+1) = x(k) + w;

xhat_(k+1) = xhat(k);

P_(k+1) = P(k) + Q;

endfor

plot(time,xhat, time, y, 'x')
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Estimating a scalar constant

Solution
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Figure 11: Noisy measurement and state estimate versus time when estimating a scalar
constant.
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How about just taking the sample mean for the estimate?

Solution
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Figure 12: Taking the sample mean as the estimate
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No process noise means we’re eventually certain!

Solution
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Figure 13: Estimate error variance goes to zero without process noise
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Now let’s add some process noise

Choose Q > 0

x+ = x + w

y = x + v

w and v are zero mean random variables with variances Q = 0.1 and
R = 1. In simulation, we use

w = sqrt(Q)*randn;

v = sqrt(R)*randn;
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Process noise leads to nonzero steady-state variance

Solution
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Figure 14: Process noise leads to nonzero steady-state estimate error variance
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Notice now that x is on the move

Solution
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Figure 15: With process noise, the state x is moving
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And our estimate x̂ is on the chase
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Figure 16: The optimal estimate x̂ is chasing after x
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And the sample mean is no longer a good estimator

Solution
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Figure 17: The sample mean is no longer a good estimator
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Observability

We next explore the convergence properties of the state estimators.
For this we require the concept of system observability.

The basic idea of observability is that any two distinct states can be
distinguished by applying some input and observing the two system
outputs over some finite time interval (Sontag, 1998, p.262–263).

This general definition is discussed in more detail when treating
nonlinear systems in Rawlings and Mayne (2009, Chapter 4), but
observability for linear systems is much simpler.

First of all, the applied input is irrelevant and we can set it to zero.
Therefore consider the linear time-invariant system (A,C ) with zero
input

x(k + 1) = Ax(k)

y(k) = Cx(k)
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Observability

The system is observable if there exists a finite N, such that for every
x(0), N measurements {y(0), y(1), . . . , y(N − 1)} distinguish
uniquely the initial state x(0).

Similarly to the case of controllability, if we cannot determine the
initial state using n measurements, we cannot determine it using
N > n measurements.

Therefore we can develop a convenient test for observability as
follows. For n measurements, the system model gives

y(0)
y(1)

...
y(n − 1)

 =


C
CA

...
CAn−1

 x(0) (16)
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Observability test

The question of observability is therefore a question of uniqueness of
solutions to these linear equations. The matrix appearing in this
equation is known as the observability matrix O

O =


C
CA

...
CAn−1

 (17)

From the fundamental theorem of linear algebra, we know the
solution to (16) is unique if and only if the columns of the np × n
observability matrix are linearly independent.

Therefore, we have that the system (A,C ) is observable if and only if

rank(O) = n
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Convergence of the state estimator

Next we consider the question of convergence of the estimates of the
optimal estimators we have considered.

The simplest convergence question to ask is the following. Given an
initial estimate error, and zero state and measurement noises, does
the state estimate converge to the state as time increases and more
measurements become available?

If the answer to this question is yes, we say the estimates converge;
sometimes we say the estimator converges.
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Optimality of estimator does not ensure convergence

As with the regulator, optimality of an estimator does not ensure its
stability. Consider the case A = I ,C = 0. The optimal estimate is
x̂(k) = x(0), which does not converge to the true state unless we
have luckily chosen x(0) = x(0).

If we could count on that kind of luck, we would have no need for
state estimation!

Obviously the lack of stability is caused by our choosing an
unobservable (undetectable) system.
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Combining the two steps of the Kalman filter

We can combine the two steps of the Kalman filter into one step.
The estimate is

x̂−(k + 1) = Ax̂(k)

= A

(
x̂−(k) + L(y(k)− Cx̂−(k))

)
x̂−(k + 1) = Ax̂−(k) + L̃(y(k)− Cx̂−(k))

with L̃ = AL.

And the steady-state Riccati equation and estimator gain are

P− = Q + AP−A′ − AP−C ′(CP−C ′ + R)−1CP−A′

L̃ = AP−C ′(CP−C ′ + R)−1
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Evolution of estimate error

We define estimate error as

x̃ = x − x̂−

We then have

x̃(k + 1) = x(k + 1)− x̂−(k + 1)

= Ax(k)−
(
Ax̂−(k) + L̃(y(k)− Cx̂−(k))

)
= A

(
x(k)− x̂−(k)

)
− L̃
(
Cx(k)− Cx̂−(k)

)
x̃(k + 1) = (A− L̃C )x̃(k)
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Of what does this remind us?

Estimator

x̃+ = (A− L̃C )x̃

L̃ = AP−C ′(CP−C ′ + R)−1

P− = Q + AP−A′ − AP−C ′(CP−C ′ + R)−1CP−A′

Regulator!

x+ = (A + BK )x

K = −(B ′ΠB + R)−1B ′ΠA

Π = Q + A′ΠA− A′ΠB(B ′ΠB + R)−1B ′ΠA
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Duality of regulation and estimation

Duality variables

Regulator Estimator

A A′

B C ′

Π P−

Q Q
R R

K −L̃′
A + BK (A− L̃C )′

x x̃ ′

Regulator Estimator

R > 0, Q > 0 R > 0, Q > 0
(A,B) controllable (A,C ) observable

Two for the price of one

Establishing stability of the regulator A + BK establishes stability of the
estimator!
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Estimator convergence

Lemma 3 (Estimator convergence)

For (A,C ) observable, Q,R > 0, and noise-free measurements
y(k) =

{
Cx(0),CAx(0), . . . ,CAkx(0)

}
, the optimal linear state estimate

converges to the state (estimate error converges to zero)

x̃(k)→ 0 as k →∞
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Enlarging the class of systems

The estimator convergence result in Lemma 3 is the simplest to
establish, but, as in the case of the LQ regulator, we can enlarge the
class of systems and weighting matrices (variances) for which
estimator convergence is guaranteed.

The system restriction can be weakened from observability to
detectability, which is discussed in Exercises 1.31 and 1.32.

The restriction on the process disturbance weight (variance) Q can be
weakened from Q > 0 to Q ≥ 0 and (A,Q) stabilizable, which is
discussed in Exercise 1.33.

The restriction R > 0 remains to ensure uniqueness of the estimator.
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But we have noise in the system!

Now we keep the noise, x+ = Ax + w , y = Cx + v , and estimate error
satisfies

x̃(k + 1) = x(k + 1)− x̂−(k + 1)

= Ax(k) + w −
(
Ax̂−(k) + L̃(y(k)− Cx̂−(k))

)
= A

(
x(k)− x̂−(k)

)
+ w − L̃

(
Cx(k) + v − Cx̂−(k)

)
x̃(k + 1) = (A− L̃C )x̃(k) + w − L̃v
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Behavior with and without disturbances

x̃0

Nominal System

x̃+ = (A− L̃C )x̃

x̃0

System with Disturbance

x̃(k + 1) = (A− L̃C )x̃(k) + w − L̃v

w is the process disturbance
v is the measurement disturbance
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Review
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Lab Exercises — LQR

Exercise 1.25

Exercise 2.3

Exercise 2.19

Exercise 6.2
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Lab Exercises — LQE

Exercise 1.30

Exercise 1.31

Exercise 1.34

Exercise 1.36

Exercise 1.41

Exercise 1.43
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